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Abstract

The perturbation seen in the experimental differential elastic

scattering cross section for the 40eV He + Ne system has been attributed

to a single crossing of two intermolecular potential energy curves. A new

theoretical treatment of the curve crossing problem, namely that of Delos and

Thorson, is employed to obtain the crossing probabilities and phases asso-

ciated with the crossing. These are determined by utilizing ab initio

potentials involved in the crossing and are further used in a partial wave

calculation of the cross section, which is compared with our experiment. The

origin of the oscillatory structure observed in the differential cross sec-

tion is discussed in semi-classical terms by defining the problem in terms

of two pseudo-deflection functions. A rainbow effect is shown to be related

to a particular feature (a maximum rather than a minimum) of these deflection

functions.



I. Introduction

Extensive studies of the differential scattering of singly charged

rare gas ions by rare gas atoms have been reported by several laboratories..

These efforts have contributed greatly to our theoretical understanding of

elastic scattering and various inelastic processes which generally involve

several potentials and interactions of the electronic states of the collision

partners.. The more detailed theoretical analysis which is needed to cope

with such problems is currently in a state of rapid development. .For example,

a unified formal treatment of the two-state potential curve crossing problem

for atomic collisions has just been completed by Delos and Thorson ; this

treatment of the two-state problem being more complete than the standard Landau-

Zener-Stuckieberg method which has been used in many calculations heretofore.

Briefly, the approach developed by Delos and Thorson essentiallyreduces the

problem of solving the two coupled second order wave equations to the easier

task of solving three first order "trajectory equa-

tions". Their solutions are readily connected with the S-matrix elements

describing the scattering amplitudes for the two state system. The inputs to

such a calculation are the potential curves in question (either a diabatic or

adiabatic representation will suffice) and the interaction term V 2(R) in the

vicinity of the crossing.

The purposes of this paper are to: 1) demonstrate the results of

such a calculation for the scattering system He +Ne (Ecm=40eV), where the

initial inputs are from an ab initio calculation of Sidis and Lefebvre-Brion3

for the NeHe+ molecular ion; 2) compare'these results with the differential

elastic scattering cross section measured in this laboratory; 3) suggest a
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slight modification in the potentials (which probably isn't unique) which is

necessary to bring certain features of the calculation and experiment into

fairly good agreement and; 4) disucss the origin of the observed scattering

features in semiclassical terms.

II. A Summary of the Theory

The recent theoretical work of Delos and Thorson , (to which the

reader should refer for complete details of the theory) has reduced the two

coupled Schroedinger equations which are assumed to govern the dynamics of

the scattering, to the-three:first order equations:
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The quantities B and s depend upon the angular momentum quantum

number, Q, and the potential parameters through the relations:

6 1 fE 8(R) 'hl(- Q+-b- R * (d R] R VI Ri !
V1 F(RL)
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where V12(Rc) is the interaction term, V1 and V2 are the two potential curves

as defined in Fig. 1; F(R
c
) is the geometric average of e d IRand

: d %ZefR 1 and the subscript c refers to the crossing.

The set of equations (1) are numerically integrated for each value

of Z from t = - to t = +- (in practice the quantities rl(k,t), r2 (k,t), and

Z(k,t) have attained their asymptotic values for t = +30 at which point the

integration is halted). The solutions rCl(), r2(Q), and Z(Q) have the same

general validity in the semiquantal regime as do the JWKBL phase shifts, even

in the important case where the classical turning point is close to the

crossing. Moreover, these solutions are connected with the elastic scattering

problem in the following way:
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Here, Tla() is the JWKBL phase shift resulting from scattering

by the ground state adiabatic potential (i.e., Va(R) in Fig. 1).

For a small interaction term, V1 2 (Rc), it is necessary to solve the

set (1) only over a relatively narrow range of Z around kc. Outside.this

range the Landau-Zener transition probability is a very good approximation

to Z2 ( ); r l() is constant, approximately w/4; and r2(Q)+T is essentially

the difference between na(Y) and nd(Q), where the latter quantity is the phase

shift corresponding to the diabatic potential (i.e., V1(R) in Fig. 1) which

connects to the ground state of the separated atom and ion.

III. Analysis of the Scattering Data

In Fig. 2 are shown the experimental elastic differential cross

sections for the He +Ne system at three different energies. At 6eV the cross

section is smooth and monotonically decreasing. At 30eV a perturbation in

the differential cross section appears at large angles.. At 40eV the major

portion of this perturbation is centered in the angular range of our apparatus

(for a description of the apparatus, see ref. 4), and it is to this data that

the present analysis will be directed. It will be assumed in the subsequent

analysis that these perturbations are due to a single crossing of the B2 +

and C + states of NeHe+

An analytic function for the adiabatic curve was carefully con-

structed using the ab initio calculated points of Sidis3 as shown in Fig. 3;

the small value which he obtained for the interaction term (V12(Rc)=.26eV)

necessitated a sharp "knee" in the adiabatic potential. The functions Z(t),

rl(2), and r2(2) were found by numerical integration of the set (1), and the

partial wave sum utilizing eqns. (2) was carried to 1600 terms to evaluate

the cross section.
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The result showed that the predicted perturbation was located at

too small an angle (about a 70 shift to the left relative to the experimental

data). Putting aside uniqueness considerations, the crossing point was

shifted up by 1.3 eV as shown by the solid lines in Fig. 3. Using these

two new curves and the parameters

AVI J C drI

Vl(_) - -326 eV

Sc - 1R RC.

2.2G eV

F(RR = 31.74 ev/aL

the calculation was again performed with the result shown in Fig. 4. The

perturbations in the theoretical prediction are seen to be in quantitative

agreement with those resolved in the experiment. Furthermore, the qualitative

aspects of the experimental cross section (a smooth decrease before and

fairly smooth, with minor oscillations, after the crossing perturbation) are

satisfactorily reflected by the calculation. The major difference between

the relative differential cross section c-a t(e), and a lc(8) is in the

general decay rate of the cross section.

In determining c' expt(0) from the observed laboratory scattering

intensity, the latter was first corrected for thermal and kinematic effects

which have been discussed by Lorents and Conklin5 . This was done by

measuring (at 5 degree intervals) the energy distribution function for the
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elastic channel and fitting the observed FWHM to a form

FWHM(0) = 1 + a.e,

and the laboratory intensities were corrected accordingly. Subsequently

the normal "scattering volume" correction was made and the appropriate

Jacobian employed to retrieve ca t().
expt

If one chose to equate the two functions, c-a t() and a (0),
expt calc

at an angle 20 <8<30 , then a rather noticable disagreement is the two

functions would be observed for large scattering angles. Assuming that a

normalization of c.a (e ) at 0 = 250 to a (250) is reasonable, one
expt calc

might ask: what systematic experimental error (as a function of e) could

occur for e > 250? The horizontal lines in Fig. 4 indicate a conservation estimate

(±o.4a t(750)) of such a systematic error. Based on this normalization
expt

scheme, it is clear that there exists a significant difference in aC (0)
calc

and a t(e) for post perturbation angles. Two possible explanations for
expt

this disagreement are readily apparant: 1) the ab initio diabatic potential

(V1(R)) utilized in the calculation is too "hard" for R<Rc; or 2) the two

state approximation is not sufficient, i.e., the elastic channel may be

depleted for 8 > 50 by other nearby crossings. Since no measurements of

the inelastic differential cross sections were made, no attempt to distinguish

between these two possibilities has been made.

IV. Semiclassical Interpretation

In order to discuss the origin of the observed scattering features

in semiclassical terms, two pseudo-deflection functions 91(Q) and 62(Q)-

have been defined:



These functions have been constructed by extending the equivalence relation

to the arguments which appear in the partial wave sum in equation (2).

l(Q) and 82(Q) have been plotted along with the adiabatic and

diabatic deflection functions & a(Q) and 0 d(Q) in Fig. 5. r1(.Z) is essen-

tially a step function around 9. (the angular momentum for which the classical
c

turning point equals Rc); this produces a negative pulse in the deflection

function ( ( l(Q)) which serves to decrease G)a(Z) only in the region

immediately to the left of zC' As previously mentioned when 2 becomes small

so that to the left of -

02(Q) d i sa)

The difference between t'2(Q) and Gd(Q) is the approximately wedge-shaped

region of area 27r which has been removed from &d(9) around Zc'

In our numerical procedures we have not solved the set (l) over

the entire range of Z. For Z-c > 16, Z(() is almost zero and Z (9) is

entirely negligible. Consequently, for large Z, the adiabatic phase shifts

are all that need be calculated. Similarly, for 9 in the region 9 -9 > 20,

@2(Q) has converged to d(Q). In this same region rl( ) has been extra-

polated; this makes negligible difference in the resulting calculation since
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rl(Q) has attained its limit (approximately T/4) and makes no further contri-

bution to 1(Z). In this. region the Landau-Zener approximation has been

used for Z2(Z), that is:

j(Q) _exp_-z-rW 8 - d(V2 R

The semiclassical predictions of 01(2) and e 2(Q) for the

differential cross section may now be stated; here, references to angles

and values of . will be to Fig. 5. For 8 > 0
3

there are two paths the

system may follow, i.e. 01(Q) = G a() and G2(Q) = d(jZ). Since Z(Z)

is almost unity . d(2) basically accounts for the differential cross section

in this region. Since Z(Z) is not identically unity however, there should

be some small amplitude oscillations in a(e) for e > 03. A straight forward

semiclassical treatment shows that the cross section should oscillate with

periodicity

An ' (3)

and amplitude of approximately one tenth the average intensity. Furthermore,

equation (3) is found to be valid for all angles larger than 0 i.e., equation

(3) predicts the periodicities of the high frequncy oscillations of the

calculated differential cross sections in this angular region. Since only

one classical trajectory 1l(Q) = Pa(P) exists for e < 0o all oscillations

are damped out in this region.
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Olson and Smith have pointed out that the minimum in a could
a

give rise to a rainbow effect in the differential cross section. However,

by referring to the graph of Z2(2) it is apparant that the probability that

the system will undergo a deflection of eo is very small. Consequently this

rainbow effect should not appear in differential cross section. If the

coupling were stronger, the effects of this broad minimum would probably be

quite spectacular.

The large "rainbow-like" envelope (at 520) in the cross section is

essentially due to the negatively curved double-valued portion of 0 1()

immediately to the right of 2 . Since 01(Q) possesses the other double-
c 1

valued portion to the left of c , this last assertion should be verified.

In order to do so a large negative pulse has been added to l(Q) in the

vicinity of its minimum and the cross section recalculated. The results

are shown in Fig. 6. Since the rainbow structure has only moved about 2

the small amount by which the maximum of l1(2) has changed instead of the

large change effected at its minimum, the initial assertion is believed to

be correct. Also, since the multiplicity of (the distorted) 81(Q) has

been extended to include angles less than e0, the higher frequency oscillations

appear at smaller angles.

V. Conclusion

Intermolecular potentials very similar to the ab initio potentials

of Sidis along with the semiquantal method of Delos and Thorson have been

utilized in a calculation of the elastic differential cross section and

compared to the experimental results. In this particular problem (He + Ne)
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the region in which the "trajectory equations" must be solved to obtain the

transition probability and the corresponding phase shifts extends over a

small range of angular momenta, so that the numerical work is not too formid-

able and the correct evaluation of these quantities is seen to provide better

agreement with experiment (particularly in the elastic scattering in the

region most sensitive to the crossing) than did earlier treatments of this

problem. Furthermore, the Delos-Thorson treatment lends itself to a semi-

classical interpretation, which is shown to be capabel of shedding considerable

light on the basic physics associated with the two-state crossing problem.
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Figure Captions

Figure 1 Schematic diagram of the potential curves for NeHe discussed in

this paper. Vl(R) and V2 (R) are the results of diabatic calcula-

tions and VA(R) is an assumed adiabatic interaction..

Figure 2 Experimental differential elastic scattering cross sections for

He+ + Ne at; (a) 40eV, (b) 30eV, (c) 6eV.

Figure 3 Circles - result of the Sidis calculation, solid lines - analytic

functions representing the adiabatic and diabatic. curves correspond-

ing.to these circles, dashed line - curves which were used to

calculate the differential cross section in figure 4.

Figure 4 Differential elastic scattering cross section, 40eV He + Ne:

solid line - calculation; points - experiment.

Figure 5

Figure 61

Inset - the function Z2(k); solid line - adiabatic deflection

function (a, chain line - diabatic deflection function edl

dashed line - the pseudo deflection function @2' dotted line -

the pseudo deflection function O1.

(Bottom) solid lines - ®i(M) and 02(Q) from figure 5, dashed

line - the distortion introduced into @1; (top) solid line -

convoluted differential cross section corresponding to undistorted

O and 02' dashed line - convoluted differential cross section

where 01 has been distorted. Both cross sections have been cal-

culated for the 40eV He + Ne elastic scattering system.
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